

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 5th Semester Examination, 2022-23

PHSADSE03T-PHYSICS (DSE1/2)

NUCLEAR AND PARTICLE PHYSICS

Time Allotted: 2 Hours Full Marks: 50

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

Question No. 1 is compulsory and answer any two from the rest

1. Answer any *fifteen* questions from the following:

 $2 \times 15 = 30$

- (a) What is the significance of non-zero electric quadrupole moment of a nucleus?
- (b) What is the minimum kinetic energy required to probe a nucleus of diameter 10 fm?
- (c) What is straggling of range of an α-particle?
- (d) Mention two differences between direct nuclear reaction and compound nuclear reaction.
- (e) Explain why an isolated photon cannot produce an electron-positron pair.
- (f) Discuss the working principle of a scintillation detector.
- (g) How close can a proton with kinetic energy 2 MeV get to a gold nucleus (Z = 79) at rest?
- (h) Why is nuclear fusion not possible beyond the iron group of elements?
- (i) Consider the reaction among nuclei:

$$A+B\rightarrow C+D^*$$

where the nucleus D is created in an excited state with excitation energy E_D . If the masses of the nuclei are given, write down an expression for Q-value of this reaction.

- (j) What are fertile and fissile nuclei?
- (k) Can you accelerate an electron by a cyclotron? Discuss.
- (1) Give names and symbols for the antiparticles of e, p, v_e and k^+ .
- (m) Calculate the mass of U-238 with 1 Curie activity.
- (n) What are baryons and mesons? Give one example for each of them.
- (o) What are anomalous about the magnetic dipole moment of a neutron?
- (p) What is the difference between beta decay and internal conversion process?
- (q) Give an example each for a LINAC and a cyclotron situated in India.
- (r) What are the quark contents of a proton and an electron?
- (s) Give the spin and parity of two stable isotopes of Li.
- (t) Give an example of a hyperon. What is a hyper nucleus?

CBCS/B.Sc./Hons./5th Sem./PHSADSE03T/2022-23

2. (a) Define range of an α -particle in a medium. Why is it expressed in kg/m ² unit?	1+1
(b) Mention two inadequacies in the nuclear liquid drop model.	1+1
(c) What is mass parabola? What is its utility?	1+2
(d) A nucleus of mass number 240 decays by α -emission to the ground state of the daughter nucleus. The Q-value of this process is 5.26 MeV. Find out the energy of the α -particle.	3
3. (a) What is a Geiger-Müller counter? How does it work?	1+3
(b) In Compton scattering between a photon and a stationary electron, what is the maximum wavelength of the scattered photon if the incident photon has wavelength λ ?	1
(c) Explain three processes by which γ -rays lose energy by interaction with matter. Give your answer in brief.	3
(d) Write down and complete the nuclear reaction $^{15}N_7$ (p,d), indicating the compound nucleus.	2
4. (a) An experimentalist found a radioactive source that emits both α and β particles with half-lives 1600 years and 400 years respectively. After what time would one-fourth of the material remain undecayed?	3
(b) Write down the CPT conservation law.	2
(c) What is the definition of binding energy of a nucleus? How much is it for a valence neutron of a nucleus lying on the neutron drip line?	1+1
(d) What is bremsstrahlung radiation? Why is it important in the context of electrons interacting with matter?	1+2
5. (a) Show, using weight diagram, the octet symmetry of mesons and baryons.	2+2
(b) Check whether the following reactions are allowed or forbidden: (i) $p + \overline{p} \rightarrow 2\pi^+ + 2\pi^- + 2\pi^0$	$1\frac{1}{2}+1\frac{1}{2}$
(ii) $\pi^+ + p^- \rightarrow \overline{\Sigma}^- + k^-$	
(c) Show that an electron is a clean probe for probing a nucleus at high beam energies.	3

Y